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Distributed Data Processing

* The idea of distributed databases is
older than you might think

Richard Peebles, Eric G. Manning: A Computer Architecture for
Large (Distributed) Data Bases. VLDB 1975: 405-427

* Distributed data structures and
algorithms have always been around

* SO, what is new?



Distributed Data Processing




Hadoop Distributed File System

Name node

e Partitions and stores
data on multiple

machines

* The same set of .
machines will process M\ata nodes
the data

* Accessible through
simple shell commands
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MapReduce Computation

* A programing paradigm for expressing
distributed algorithms
* Introduced by Google in 2004
" Google File System for distributed storage
* Google MapReduce for distributed
processing

* Hadoop is the open source counterpart
released in 2007 and contributed mainly by

Yahoo!
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Word Count Example

a 2

am 2

don't 2

e | 9

| often repeat repeat myself :(nnccl)lvr\lled ;

| often repeat repeat o )
| don’t don’t know why know why

| simply know that | | | myself 2

am am inclined to say to say often 4

a lot a lot this way this way repeat 8

| often repeat repeat myself Sdy 2

| often repeat repeat simply 1

that 1

this 2

to 2

way 2

why 2



Word Count Walkthrough (1/2)

I often repeat repeat myself
I often repeat repeat

I don't don't know why know why
I simply know that [ T1

am am inclined to say to say

a lot a lot this way this way

I often repeat repeat myself

I often repeat repeat

~
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Word Count Walkthrough (2/2)
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Word Count MapReduce

* Map: Line -> (word, 1) pairs
* Reduce: (word, {c}) = (word, Xc)



Complete Word Count in Hadoop

public static class TokenizerMapper
extends Mapper<Obiject, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void (Object key, Text value, Context context
) throws I0Exception, InterruptedException {

StringTokenizer itr = new StringTokenizer(value.toString());

while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);

}
}
}

public static class IntSumReducer
extends Reducer<Text,IntWritable, Text,IntWritable> {
private IntWritable result = new IntWritable();
public void (Text key, Iterable<IntWritable> values,
Context context
) throws I0Exception, InterruptedException {
intsum=0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);

public static void

(String[] args) throws Exception {
Configuration conf = new Configuration();

Job job =Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FilelnputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);

Source: https://hadoop.apache.org/docs/r3.2.2/hadoop-mapreduce-
client/hadoop-mapreduce-client-

core/MapReduceTutorial.html#Example: WordCount v1.0
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https://hadoop.apache.org/docs/r3.2.2/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html

Spark
* Hadoop and MapReduce were a

perfect research vehicle

* They helped in framing what we really
want in a big data system

* Spark came as a new system designed
from scratch to satisfy the real need of
big data

* Simpler and more efficient



Complete Word Count in Spark

// In Scala shell

val lines = sc.textFile("data.txt")

val pairs = lines.flatMap(s => s.split("\\b"))
.map(w =>(w,1))

val counts = pairs.reduceByKey((a, b) =>a + b)

counts.saveAsTextFile("word count output.txt")

// InJava

SparkConf conf = new SparkConf();

JavaSparkContext sparkContext = new JavaSparkContext(conf);

JavaRDD<String> lines = sparkContext.textFile("data.txt");

JavaRDD<String> words = lines.flatMap(line ->
Arrays.stream(line.split("\\b")).iterator());

JavaPairRDD<String, Integer> pairs = words.mapToPair(w -> new Tuple2(w, 1));

JavaPairRDD<String, Integer> counts = pairs.reduceByKey((a, b) -> a + b);

counts.saveAsTextFile("word count output.txt");



Structured Big-data Processing

* A common use case in big-data is to
process structured or semi-structured
data

* Big-data systems were extended to
support this use-case

* Examples include Pig and Hive for
Hadoop, SparkSQL for Spark, and
Algebricks in AsterixDB



SparkSQL Example

W L XL IV T8 - Nl 807256800 GET fimages/launch-logo.gif 1713

vcc7.langara.bce.ca 807256804 GET /shuttle/missions/missions.itml  20() 8677

// Data loading
Dataset<Row> log_file = spark.read()
.option("delimiter”, "\t")

true")
11 ”true”)

.option("header",
.option(" mferSchema
.csv('nasa_log.tsv");

Marlan and Rosemary Bourns
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SparkSQL Example

// Filtering

Dataset<Row> ok_lines = log_file.filter("response=200");
long ok_count = ok_lines.count();
System.out.printin("Number of OK lines is "+ok_count);

// Grouped aggregation using SQL

Dataset<Row> bytesPerCode = log_file.sglContext()
.Sql("SELECT response, sum(bytes) from log_lines GROUP BY response");

Marlan and Rosemary Bourns
15 College of Engineering



Machine Learning on Big-data

* Many machine learning algorithms can
be expressed using the basic constructs
provided by big-data systems

* Many libraries were developed to
express ML algorithms using big-data

systems, e.g., Mahout on Hadoop and
MLlib on Spark.



Basic features of MLIib

e Feature extraction, transformation,
normalization, dimensionality
reduction, and selection

* ML algorithms for supervised and
unsupervised models

* Pipelines for constructing and
evaluating ML models

e Persistence to save and load models



Example

m Area (sqft) .. Price

1,200 $200,000
2 3 3,200 $350,000

* Goal: Build a model that estimates the
price given the house features, e.g.,
# of bedrooms and area



Initialization
* Similar to SparkSQL

val spark = SparkSession
.builder()
.appName(”SparkSQL Demo")
.config(conf)
.getOrCreate()

// Read the input

val input = spark.read
.option("header”, true)
.option("inferSchema", true)
.csv(inputfile)

Marlan and Rosemary Bourns
College of Engineering



Transformations

// Create a feature vector
val vectorAssembler = new VectorAssembler()

.setlnputCols(Array("bedrooms”, "area"))
.setOutputCol("features")

val linearRegression = new LinearRegression()
.setFeaturesCol("'features")
.setLabelCol("price")
.setMaxIter(1000)

20



Create a Pipeline

val pipeline = new Pipeline()
.setStages(Array(vectorAssembler, linearRegression))

// Hyper parameter tuning
val paramGrid = new ParamGridBuilder()
.addGrid(linearRegression.regParam,
Array(0.3, 0.1, 0.01))
.addGrid(linearRegression.elasticNetParam,
Array(0.0, 0.3, 0.8, 1.0))
build()
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Cross Validation

val crossValidator = new CrossValidator()
.setEstimator(pipeline)
.setEvaluator(new
RegressionEvaluator().setLabelCol("price"))
.setEstimatorParamMaps(paramGrid)
.setNumFolds(5)
.setParallelism(2)

val Array(trainingData, testData) =
input.randomSplit(Array(0.8, 0.2))
val model = crossValidator.fit(trainingData)
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Apply the model on test data

val predictions = model.transform(testData)
// Print the first few predictions

predictions.select("price”, "prediction").show(5)

val rmse = new RegressionEvaluator()
.setLabelCol("price")
.setPredictionCol("prediction")
.setMetricName(''rmse"
.evaluate(predictions)

println(s"RMSE on test set is Srmse")
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Semi-structured Big-data

* DBMS is good for tabular data

* JSON-like data
= Nesting
= Repetition
" Nulls



Examples

owner: “Alex”; owner: “Olivia”;

ownerPhoneNumbers: [ ownerPhoneNumbers: [
“951-555-7777”, “961-555-9999” €“951-555-2222”

1, 1

contacts: [{ contacts: [{
name: “Chris”; name: “Chris”;
phoneNumber: “951-555-6666"; phoneNumber: null;

owner: “Joe”; owner: "Jack",
ownerPhoneNumbers: [ contacts: [
“951-555-4444", “961-555-3333” {name: "Hill"},
{name: "Bob",
phoneNumber: "951-555-1234°}

owner: “Violet”;
ownerPhoneNumbers: [
“961-555-1111"

]
}




Semi-structured Data Handling

* AsterixDB: A big-data management
system (BDMS)

* MongoDB: A document database
* Parquet: A column-based data format



Big-Spatial Data (Vector)

Longitude

United States North

Latitude

Polygon g P f\j
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Big Spatial Data (Raster)

Satellite

Marlan and Rosemary Bourns
- College of Engineering

Vegetation Temperature



Next Steps

* We will dig deeper into each of these
components

* The labs will give you hands-on
experience with each component

* Assignments and mid-terms will test
vour understanding of how these
components internally work



