A Quick Tour on Big-data

Ahmed Eldawy

College of Engineering

Distributed Data Processing

* The idea of distributed databases is
older than you might think

Richard Peebles, Eric G. Manning: A Computer Architecture for
Large (Distributed) Data Bases. VLDB 1975: 405-427

* Distributed data structures and
algorithms have always been around

* SO, what is new?

Distributed Data Processing

Hadoop Distributed File System

Name node

e Partitions and stores
data on multiple

machines

* The same set of .
machines will process M\ata nodes
the data

* Accessible through
simple shell commands

= copyFromLocal
= copyTolocal

N
3
Y)
N] N

N

)

MapReduce Computation

* A programing paradigm for expressing
distributed algorithms
* Introduced by Google in 2004
" Google File System for distributed storage
* Google MapReduce for distributed
processing

* Hadoop is the open source counterpart
released in 2007 and contributed mainly by

Yahoo!
[|

HDFS ,
= Hadoop I\/IapReduce”a[aZ’g]

Word Count Example

a 2

am 2

don't 2

e | 9

| often repeat repeat myself :(nnccl)lvr\lled ;

| often repeat repeat o)
| don’t don’t know why know why

| simply know that | | | myself 2

am am inclined to say to say often 4

a lot a lot this way this way repeat 8

| often repeat repeat myself Sdy 2

| often repeat repeat simply 1

that 1

this 2

to 2

way 2

why 2

Word Count Walkthrough (1/2)

I often repeat repeat myself
I often repeat repeat

I don't don't know why know why
I simply know that [T1

am am inclined to say to say

a lot a lot this way this way

I often repeat repeat myself

I often repeat repeat

~

(Partition #1.1

[I often repeat repeat myself |

(Partition #2.1
| I[1]|oﬂen] 1||repeat| lllrepeat] 1]
[myself | 1][1] 1]joften| 1][repeat] 1]

[I often repeat repeat |

Input file splits

Y

—(Partition #1.3

| Trepeat] 1I[1T1][don't] 1][don't] 1]

[I don't don't know why know why |
L J/

(Partition #1.2

|know | 1|[why] 1]|[know | 1|[why| llj
.

(Partition #2.2
[1]1][simply [1]{know] 1|[that | 1]

[I simply know that I 11 |

| LT[1] [am[1][am[1]

[am am inclined to say to say |

finclined| 1||to] 1]|say| 1][to] 1|

[a lot a lot this way this way |

[say] 1] a1][lot] 1|[a]1][lot] 1]

(N J/

[I often repeat repeat myself |

[this | 1]{way| 1]| this | 1|[way] 1]
.

(Partition #2.3
| I mloﬁen m[repead—l”repeatm

[I often repeat repeat |

> Imyself | 1]{ I] 1]loften]| 1]|repeat] 1|

|repeat| 1 |

Line records

&

~©

Word-count pairs

Word Count Walkthrough (2/2)

(Partition #3.1)
[don't| 2][I [3]|{know | 2||myself]| 1|
[often | 2]|repeat] 4 || why| 2]

.

y &

(Partition #3.2

a]2][am]2]| I|4]|finclined| 1]
[know | 1]{1ot | 2]|say] 2||simply | 1]
Jthat [1][to] 2]| this | 2][way]| 2]

N\

(Partition #3.3

? 9

[I |2||myse1f[l”often |2||repeat| 4L
<

Partial word count

Partition #4.1 1 (Partition #5.1 B
la]2][am|2][1[4][T[3][1]2] [a] 2][am]2][1]9]finclined] 1]
linclined| 1|{know | 1 ||know | 2] > |know | 3|[myself | 2][often | 4]
[myself | 1|[myself | 1]|[often | 2] [say| 2|[simply | 1][way] 2|
loften [2][say] 2||simply | 1]

[way|2]|[why[2] J L)
Partition #4.2 1 (Partition #5.2)
[don't| 2][1ot]| 2||repeat] 4] [don't| 2][1ot | 2||repeat] 81

Irepeatmlthat | 1]] this | 2][to] 2]

J/

.

[that | 1]{ this [2||to] 2]

Shuffled records

Final word count

Word Count MapReduce

* Map: Line -> (word, 1) pairs
* Reduce: (word, {c}) = (word, Xc)

Complete Word Count in Hadoop

public static class TokenizerMapper
extends Mapper<Obiject, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void (Object key, Text value, Context context
) throws I0Exception, InterruptedException {

StringTokenizer itr = new StringTokenizer(value.toString());

while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);

}
}
}

public static class IntSumReducer
extends Reducer<Text,IntWritable, Text,IntWritable> {
private IntWritable result = new IntWritable();
public void (Text key, Iterable<IntWritable> values,
Context context
) throws I0Exception, InterruptedException {
intsum=0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);

public static void

(String[] args) throws Exception {
Configuration conf = new Configuration();

Job job =Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FilelnputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);

Source: https://hadoop.apache.org/docs/r3.2.2/hadoop-mapreduce-
client/hadoop-mapreduce-client-

core/MapReduceTutorial.html#Example: WordCount v1.0

10

https://hadoop.apache.org/docs/r3.2.2/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html

Spark
* Hadoop and MapReduce were a

perfect research vehicle

* They helped in framing what we really
want in a big data system

* Spark came as a new system designed
from scratch to satisfy the real need of
big data

* Simpler and more efficient

Complete Word Count in Spark

// In Scala shell

val lines = sc.textFile("data.txt")

val pairs = lines.flatMap(s => s.split("\\b"))
.map(w =>(w,1))

val counts = pairs.reduceByKey((a, b) =>a + b)

counts.saveAsTextFile("word count output.txt")

// InJava

SparkConf conf = new SparkConf();

JavaSparkContext sparkContext = new JavaSparkContext(conf);

JavaRDD<String> lines = sparkContext.textFile("data.txt");

JavaRDD<String> words = lines.flatMap(line ->
Arrays.stream(line.split("\\b")).iterator());

JavaPairRDD<String, Integer> pairs = words.mapToPair(w -> new Tuple2(w, 1));

JavaPairRDD<String, Integer> counts = pairs.reduceByKey((a, b) -> a + b);

counts.saveAsTextFile("word count output.txt");

Structured Big-data Processing

* A common use case in big-data is to
process structured or semi-structured
data

* Big-data systems were extended to
support this use-case

* Examples include Pig and Hive for
Hadoop, SparkSQL for Spark, and
Algebricks in AsterixDB

SparkSQL Example

W L XL IV T8 - Nl 807256800 GET fimages/launch-logo.gif 1713

vcc7.langara.bce.ca 807256804 GET /shuttle/missions/missions.itml 20() 8677

// Data loading
Dataset<Row> log_file = spark.read()
.option("delimiter”, "\t")

true")
11 ”true”)

.option("header",
.option(" mferSchema
.csv('nasa_log.tsv");

Marlan and Rosemary Bourns
" College of Engineering

SparkSQL Example

// Filtering

Dataset<Row> ok_lines = log_file.filter("response=200");
long ok_count = ok_lines.count();
System.out.printin("Number of OK lines is "+ok_count);

// Grouped aggregation using SQL

Dataset<Row> bytesPerCode = log_file.sglContext()
.Sql("SELECT response, sum(bytes) from log_lines GROUP BY response");

Marlan and Rosemary Bourns
15 College of Engineering

Machine Learning on Big-data

* Many machine learning algorithms can
be expressed using the basic constructs
provided by big-data systems

* Many libraries were developed to
express ML algorithms using big-data

systems, e.g., Mahout on Hadoop and
MLlib on Spark.

Basic features of MLIib

e Feature extraction, transformation,
normalization, dimensionality
reduction, and selection

* ML algorithms for supervised and
unsupervised models

* Pipelines for constructing and
evaluating ML models

e Persistence to save and load models

Example

m Area (sqft) .. Price

1,200 $200,000
2 3 3,200 $350,000

* Goal: Build a model that estimates the
price given the house features, e.g.,
of bedrooms and area

Initialization
* Similar to SparkSQL

val spark = SparkSession
.builder()
.appName(”SparkSQL Demo")
.config(conf)
.getOrCreate()

// Read the input

val input = spark.read
.option("header”, true)
.option("inferSchema", true)
.csv(inputfile)

Marlan and Rosemary Bourns
College of Engineering

Transformations

// Create a feature vector
val vectorAssembler = new VectorAssembler()

.setlnputCols(Array("bedrooms”, "area"))
.setOutputCol("features")

val linearRegression = new LinearRegression()
.setFeaturesCol("'features")
.setLabelCol("price")
.setMaxIter(1000)

20

Create a Pipeline

val pipeline = new Pipeline()
.setStages(Array(vectorAssembler, linearRegression))

// Hyper parameter tuning
val paramGrid = new ParamGridBuilder()
.addGrid(linearRegression.regParam,
Array(0.3, 0.1, 0.01))
.addGrid(linearRegression.elasticNetParam,
Array(0.0, 0.3, 0.8, 1.0))
build()

21

Cross Validation

val crossValidator = new CrossValidator()
.setEstimator(pipeline)
.setEvaluator(new
RegressionEvaluator().setLabelCol("price"))
.setEstimatorParamMaps(paramGrid)
.setNumFolds(5)
.setParallelism(2)

val Array(trainingData, testData) =
input.randomSplit(Array(0.8, 0.2))
val model = crossValidator.fit(trainingData)

22

Apply the model on test data

val predictions = model.transform(testData)
// Print the first few predictions

predictions.select("price”, "prediction").show(5)

val rmse = new RegressionEvaluator()
.setLabelCol("price")
.setPredictionCol("prediction")
.setMetricName(''rmse"
.evaluate(predictions)

println(s"RMSE on test set is Srmse")

23

Semi-structured Big-data

* DBMS is good for tabular data

* JSON-like data
= Nesting
= Repetition
" Nulls

Examples

owner: “Alex”; owner: “Olivia”;

ownerPhoneNumbers: [ownerPhoneNumbers: [
“951-555-7777”, “961-555-9999” €“951-555-2222”

1, 1

contacts: [{ contacts: [{
name: “Chris”; name: “Chris”;
phoneNumber: “951-555-6666"; phoneNumber: null;

owner: “Joe”; owner: "Jack",
ownerPhoneNumbers: [contacts: [
“951-555-4444", “961-555-3333” {name: "Hill"},
{name: "Bob",
phoneNumber: "951-555-1234°}

owner: “Violet”;
ownerPhoneNumbers: [
“961-555-1111"

]
}

Semi-structured Data Handling

* AsterixDB: A big-data management
system (BDMS)

* MongoDB: A document database
* Parquet: A column-based data format

Big-Spatial Data (Vector)

Longitude

United States North

Latitude

Polygon g P f\j

Marlan and Rosemary Bourns
College of Engineering

Big Spatial Data (Raster)

Satellite

Marlan and Rosemary Bourns
- College of Engineering

Vegetation Temperature

Next Steps

* We will dig deeper into each of these
components

* The labs will give you hands-on
experience with each component

* Assignments and mid-terms will test
vour understanding of how these
components internally work

